Fusion of Learning Automata to Optimize Multi-constraint Problem
نویسندگان
چکیده
This paper aims to introduce an effective classification method of learning for partitioning the data in statistical spaces. The work is based on using multi-constraint partitioning on the stochastic learning automata. Stochastic learning automata with fixed or variable structures are a reinforcement learning method. Having no information about optimized operation, such models try to find an answer to a problem. Converging speed in such algorithms in solving different problems and their route to the answer is so that they produce a proper condition if the answer is obtained. However, despite all tricks to prevent the algorithm involvement with local optimal, the algorithms do not perform well for problems with a lot of spread local optimal points and give no good answer. In this paper, the fusion of stochastic learning automata algorithms has been used to solve given problems and provide a centralized control mechanism. Looking at the results, is found that the recommended algorithm for partitioning constraints and finding optimization problems are suitable in terms of time and speed, and given a large number of samples, yield a learning rate of 97.92%. In addition, the test results clearly indicate increased accuracy and significant efficiency of recommended systems compared with single model systems based on different methods of learning automata.
منابع مشابه
Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملA Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem
Job shop scheduling problem (JSSP), as one of the NP-Hard combinatorial optimization problems, has attracted the attention of many researchers during the last four decades. The overall purpose regarding this problem is to minimize maximum completion time of jobs, known as makespan. This paper addresses an approach to evolving Cellular Learning Automata (CLA) in order to enable it to solve the J...
متن کاملOptimization of an energy based bi-objective multi skilled resource investment project scheduling problem
Growing concern in the management of energy due to the increasing energy costs, has forced managers to optimize the amount of energy required to provide products and services. This research integrates an energy-based resource investment project-scheduling problem (RIP) under a multi-skilled structure of the resources. The proposed energy based multi skilled resource investment problem (EB-MSRIP...
متن کاملMulti-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier
In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...
متن کامل